Power prior distributions for regression models
نویسندگان
چکیده
منابع مشابه
Compatible Prior Distributions for DAG models
The application of certain Bayesian techniques, such as the Bayes factor and model averaging, requires the specification of prior distributions on the parameters of alternative models. We propose a new method for constructing compatible priors on the parameters of models nested in a given DAG (Directed Acyclic Graph) model, using a conditioning approach. We define a class of parameterisations c...
متن کاملFlexible Prior Distributions for Deep Generative Models
We consider the problem of training generative models with deep neural networks as generators, i.e. to map latent codes to data points. Whereas the dominant paradigm combines simple priors over codes with complex deterministic models, we argue that it might be advantageous to use more flexible code distributions. We demonstrate how these distributions can be induced directly from the data. The ...
متن کاملPower Prior Elicitation in Bayesian Quantile Regression
We address a quantile dependent prior for Bayesian quantile regression. We extend the idea of the power prior distribution in Bayesian quantile regression by employing the likelihood function that is based on a location-scale mixture representation of the asymmetric Laplace distribution. The propriety of the power prior is one of the critical issues in Bayesian analysis. Thus, we discuss the pr...
متن کاملMultiple Retrieval Models and Regression Models for Prior Art Search
This paper presents the system called PATATRAS (PATent and Article Tracking, Retrieval and AnalysiS) realized at the Humboldt University for the IP track of CLEF 2009. Our approach presents three main characteristics: 1. The usage of multiple retrieval models (KL, Okapi) and term index definitions (lemma, phrase, concept) for the three languages considered in the present track (English, French,...
متن کاملInference with normal-gamma prior distributions in regression problems
This paper considers the effects of placing an absolutely continuous prior distribution on the regression coefficients of a linear model. We show that the posterior expectation is a matrix-shrunken version of the least squares estimate where the shrinkage matrix depends on the derivatives of the prior predictive density of the least squares estimate. The special case of the normal-gamma prior, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistical Science
سال: 2000
ISSN: 0883-4237
DOI: 10.1214/ss/1009212673